Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Environ Manage ; 355: 120503, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457894

RESUMEN

The global concern regarding the adverse effects of heavy metal pollution in soil has grown significantly. Accurate prediction of heavy metal content in soil is crucial for environmental protection. This study proposes an inversion analysis method for heavy metals (As, Cd, Cr, Cu, Ni, Pb) in soil based on hyperspectral and machine learning algorithms for 21 soil reference materials from multiple provinces in China. On this basis, an integrated learning model called Stacked RF (the base model is XGBoost, LightGBM, CatBoost, and the meta-model is RF) was established to perform soil heavy metal inversion. Specifically, three popular algorithms were initially employed to preprocess the spectral data, then Random Forest (RF) was used to select the best feature bands to reduce the impact of noise, finally Stacking and four basic machine learning algorithms were used to establish comparisons and analysis of inversion model. Compared with traditional machine learning methods, the stacking model showcases enhanced stability and superior accuracy. Research results indicate that machine learning algorithms, especially ensemble learning models, have better inversion effects on heavy metals in soil. Overall, the MF-RF-Stacking model performed best in the inversion of the six heavy metals. The research results will provide a new perspective on the ensemble learning model method for soil heavy metal content inversion using data of hyperspectral characteristic bands collected from soil reference materials.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Metales Pesados/análisis , China , Aprendizaje Automático
2.
Appl Environ Microbiol ; 90(4): e0193923, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38445866

RESUMEN

The thermal bleaching percentage of coral holobionts shows interspecific differences under heat-stress conditions, which are closely related to the coral-associated microbiome. However, the ecological effects of community dynamics and interactions between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain unclear. In this study, we analyzed the diversity, community structure, functions, and potential interaction of Symbiodiniaceae and fungi among 18 coral species from a high thermal bleaching risk atoll using next-generation sequencing. The results showed that heat-tolerant C3u sub-clade and Durusdinium dominated the Symbiodiniaceae community of corals and that there were no core amplicon sequence variants in the coral-associated fungal community. Fungal richness and the abundance of confirmed functional animal-plant pathogens were significantly positively correlated with the coral thermal bleaching percentage. Fungal indicators, including Didymellaceae, Chaetomiaceae, Schizophyllum, and Colletotrichum, were identified in corals. Each coral species had a complex Symbiodiniaceae-fungi interaction network (SFIN), which was driven by the dominant Symbiodiniaceae sub-clades. The SFINs of coral holobionts with low thermal bleaching susceptibility exhibited low complexity and high betweenness centrality. These results indicate that the extra heat tolerance of coral in Huangyan Island may be linked to the high abundance of heat-tolerant Symbiodiniaceae. Fungal communities have high interspecific flexibility, and the increase of fungal diversity and pathogen abundance was correlated with higher thermal bleaching susceptibility of corals. Moreover, fungal indicators were associated with the degrees of coral thermal bleaching susceptibility, including both high and intermediate levels. The topological properties of SFINs suggest that heat-tolerant coral have limited fungal parasitism and strong microbial network resilience.IMPORTANCEGlobal warming and enhanced marine heatwaves have led to a rapid decline in coral reef ecosystems worldwide. Several studies have focused on the impact of coral-associated microbiomes on thermal bleaching susceptibility in corals; however, the ecological functions and interactions between Symbiodiniaceae and fungi remain unclear. We investigated the microbiome dynamics and potential interactions of Symbiodiniaceae and fungi among 18 coral species in Huangyan Island. Our study found that the Symbiodiniaceae community of corals was mainly composed of heat-tolerant C3u sub-clade and Durusdinium. The increase in fungal diversity and pathogen abundance has close associations with higher coral thermal bleaching susceptibility. We first constructed an interaction network between Symbiodiniaceae and fungi in corals, which indicated that restricting fungal parasitism and strong interaction network resilience would promote heat acclimatization of corals. Accordingly, this study provides insights into the role of microorganisms and their interaction as drivers of interspecific differences in coral thermal bleaching.


Asunto(s)
Antozoos , Dinoflagelados , Microbiota , Animales , Antozoos/microbiología , Arrecifes de Coral , Simbiosis , Hongos/genética
3.
Mar Life Sci Technol ; 6(1): 155-167, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38433965

RESUMEN

Coral fluorescence phenotypes have been suggested as an adaptation to a broad range of environmental conditions, yet the mechanisms linking thermal bleaching tolerance in reef-building coral populations, associated with fluorescence phenotypes due to GFP-like proteins, remains unclear. In this study, the relationship between the thermal sensitivity and phenotypic plasticity of corals was investigated using two phenotypes of Galaxea fascicularis, green and brown. The results reveal that brown G. fascicularis was more susceptible to bleaching than green G. fascicularis when exposed to a higher growth temperature of 32 °C. Both phenotypes of G. fascicularis were associated with the thermotolerant Symbiodiniaceae symbiont, Durusdinium trenchii. However, the brown G. fascicularis showed a significant decrease in Symbiodiniaceae cell density and a significant increase in pathogenic bacteria abundance when the growth temperature was raised from 29 to 32 °C. The physiological traits and transcriptomic profiles of Symbiodiniaceae were not notably affected, but there were differences in the transcriptional levels of certain genes between the two phenotype hosts of G. fascicularis. Under heat stress of 32 °C, the gene encoding green fluorescent protein (GFP)-like and chromosome-associated proteins, as well as genes related to oxidative phosphorylation, cell growth and death showed lower transcriptional levels in the brown G. fascicularis compared to the green G. fascicularis. Overall, the results demonstrate that the green form of G. fascicularis is better able to tolerate ocean warming and defend against pathogenic bacteria, likely due to higher gene transcription levels and defense ability. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00190-1.

4.
Molecules ; 29(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38338424

RESUMEN

A rice classification method for the fast and non-destructive differentiation of different varieties is significant in research at present. In this study, fluorescence hyperspectral technology combined with machine learning techniques was used to distinguish five rice varieties by analyzing the fluorescence hyperspectral features of Thai jasmine rice and four rice varieties with a similar appearance to Thai jasmine rice in the wavelength range of 475-1000 nm. The fluorescence hyperspectral data were preprocessed by a first-order derivative (FD) to reduce the background and baseline drift effects of the rice samples. Then, a principal component analysis (PCA) and t-distributed stochastic neighborhood embedding (t-SNE) were used for feature reduction and 3D visualization display. A partial least squares discriminant analysis (PLS-DA), BP neural network (BP), and random forest (RF) were used to build the rice classification models. The RF classification model parameters were optimized using the gray wolf algorithm (GWO). The results show that FD-t-SNE-GWO-RF is the best model for rice classification, with accuracy values of 99.8% and 95.3% for the training and test sets, respectively. The fluorescence hyperspectral technique combined with machine learning is feasible for classifying rice varieties.


Asunto(s)
Oryza , Espectroscopía Infrarroja Corta , Espectroscopía Infrarroja Corta/métodos , Máquina de Vectores de Soporte , Algoritmos , Aprendizaje Automático
5.
Microbiol Spectr ; 12(2): e0243623, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38174936

RESUMEN

Fungiidae have shown increased thermal adaptability in coral reef ecosystems under global warming. This study analyzes the evolutionary divergence and microbial communities of Fungiidae in the Sanjiao Reef of the southern South China Sea and explores the impact of coral evolution radiation and microbial dynamics on the heat tolerance of Fungiidae. The results found that Cycloseris was an ancient branch of Fungiidae, dating back approximately 147.8953 Mya, and Fungiidae differentiated into two ancestral clades (clades I and II) before 107.0312 Ma. Fungiidae exhibited specific symbioses with the Cladocopium C27 sub-clade. Notably, the Cladocopium C1 sub-clade has a high relative abundance in clade I, whereas the heat-tolerant Cladocopium C40 and C3u sub-clades subdominante in clade II. Regarding bacterial communities, Cycloseris costulata, the earliest divergent species, had higher bacterial ß-diversity, while the latest divergent species, Lithophyllon scabra, displayed lower bacterial α-diversity and higher community stability. Beneficial bacteria dominante Fungiidae's bacterial community (54%). The co-occurrence network revealed that microbial networks in clade II exhibited lower complexity and greater resilience than those in clade I. Our study highlights that host evolutionary radiation and microbial communities shaped Fungiidae's thermal tolerance. The variability in subdominant Symbiodiniaceae populations may contribute to interspecific differences in thermal tolerance along the evolutionary branches of Fungiidae. The presence of abundant beneficial bacteria may further enhance the thermal ability of the Fungiidae. Furthermore, the later divergent species of Fungiidae have stronger heat tolerance, possibly driven by the increased regulation ability of the host on the bacterial community, greater microbial community stability, and interaction network resistance.IMPORTANCECoral reefs are facing significant threats due to global warming. The heat tolerance of coral holobionts depends on both the coral host and its microbiome. However, the association between coral evolutionary radiation and interspecific differences in microbial communities remains unclear. In this study, we investigated the role of evolutionary radiation and microbial community dynamics in shaping the thermal acclimation potential of Fungiidae in the Sanjiao Reef of the southern South China Sea. The study's results suggest that evolutionary radiation enhances the thermal tolerance of Fungiidae. Fungiidae species that have diverged more recently have exhibited a higher presence of heat-tolerant Symbiodiniaceae taxa, more stable bacterial communities, and a robust and resilient microbial interaction network, improving the thermal adaptability of Fungiidae. In summary, this study provides new insights into the thermal adaptation patterns of corals under global warming conditions.


Asunto(s)
Antozoos , Dinoflagelados , Microbiota , Animales , Antozoos/microbiología , Antozoos/fisiología , Arrecifes de Coral , Aclimatación , Bacterias , China , Dinoflagelados/fisiología
6.
J Ethnopharmacol ; 325: 117810, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38266948

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Vine Tea (VT, Ampelopsis grossedentata), boasts a venerable tradition in China, with a recorded consumption history exceeding 1200 years. Predominantly utilized by ethnic groups in southwest China, this herbal tea is celebrated for its multifaceted therapeutic attributes. Traditionally, VT has been employed to alleviate heat and remove toxins, exhibit anti-inflammatory properties, soothe sore throats, lower blood pressure, and fortify bones and muscles. In the realm of functional foods derived from plant resources, VT has garnered attention for its potential in crafting anti-fatigue beverages or foods, attributed to its promising efficacy and minimal side effects. Currently, in accordance with the Food Safety Standards set forth by the Monitoring and Evaluation Department of the National Health and Family Planning Commission in China, VT serves as a raw material in various beverages. AIM OF THE STUDY: VT has an anti-fatigue or similar effect in folk. However, the underlying molecular mechanisms contributing to VT's anti-fatigue effects remain elusive. This study endeavors to investigate the influence of Vine Tea Aqueous Extract (VTE) on fatigue mitigation and to elucidate its operative mechanisms, with the objective of developing VTE as a functional beverage. MATERIALS AND METHODS: The preparation of VTE involved heat extraction and freeze-drying processes, followed by the identification of its metabolites using UPLC-QTOF-MS to ascertain the chemical composition of VTE. A fatigue model was established using a forced swimming test in mice. Potential molecular targets were identified through network pharmacology, transcriptome analysis, and molecular docking. Furthermore, RT-PCR and Western blot techniques were employed to assess mRNA and protein expressions related to the AMPK and FoxO pathways. RESULTS: VTE significantly prolonged the duration of swimming time in an exhaustive swimming test in a dose-dependent manner, while simultaneously reducing the concentrations of blood lactic acid (LA), lactate dehydrogenase (LDH), serum urea nitrogen (SUN), and creatine kinase (CK). Notably, the performance of the high-dose VTE group surpassed that of the well-recognized ginsenoside. VTE demonstrated a regulatory effect akin to ginsenoside on the AMPK energy metabolism pathway and induced downregulation in the expression of Gadd45α, Cdkn1a, FOXO1, and Fbxo32 genes, suggesting an enhancement in skeletal muscle mass. These findings indicate that VTE can improve energy metabolism and muscle mass concurrently. CONCLUSIONS: VTE exhibits significant anti-fatigue effects, and its mechanism is intricately linked to the modulation of the AMPK and FoxO pathways. Crucially, no caffeine or other addictive substances with known side effects were detected in VTE. Consequently, vine tea shows substantial promise as a natural resource for the development of anti-fatigue beverages within the food industry.


Asunto(s)
Ampelopsis , Ginsenósidos , Ratones , Animales , Ampelopsis/química , Ampelopsis/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ginsenósidos/uso terapéutico , Simulación del Acoplamiento Molecular , Fatiga/tratamiento farmacológico , , Músculos
7.
Chemosphere ; 350: 141106, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171402

RESUMEN

With the phase-out of legacy per- and polyfluoroalkyl substances (PFASs), PFAS alternatives have been increasingly used in industrial production and daily life. However, available information on the occurrence of PFASs and PFAS alternatives in semi-enclosed bays remains limited. As a representative semi-enclosed bay in Guangdong Province, China, Shuidong Bay has experienced severe anthropogenic pollution (industrial, shipping, cultural, and domestic) in recent decades. Water pollution in Shuidong Bay has worsened, and PFASs have been identified as ubiquitous environmental pollutants in this bay. In this study, 23 PFASs, including 5 emerging PFASs, were analyzed in water, suspended particulate matter (SPM), and sediment samples collected from Shuidong Bay. We determined that perfluorobutanoic acid (PFBA) was the predominant PFAS compound in seawater, whereas 6:2 fluorotelomer sulfonic acid (FTS) and perfluorooctane sulfonamide acetate (FOSAA) were dominant in SPM and sediment, respectively. The sediment-water partitioning coefficients were greatly dependent on the perfluorinated carbon chain length. Chlorophyll a concentration had a significant effect on the dissolved concentrations of PFASs in seawater. The ecological risk assessment indicated that the PFASs detected in the seawater and sediment samples posed no considerable risks to aquatic organisms. This study provides a valuable reference for evaluating PFAS contamination in Shuidong Bay and conducting ecological risk assessments for aquatic organisms.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Bahías , Clorofila A , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua , Fluorocarburos/análisis , China , Material Particulado/análisis , Ácidos Alcanesulfónicos/análisis
8.
Aust Crit Care ; 37(1): 111-119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38087684

RESUMEN

BACKGROUND: The negative experiences of intensive care unit (ICU) patients seriously affect their quality of life and survival outcomes. Thus, it is of great significance to evaluate the monitoring experience of ICU patients for the clinical improvement of their experiences and promote interventions. OBJECTIVES: The objective of this study was to investigate patients' experiences of ICU and to understand the sources of patient experience and influencing factors. METHODS: From November 2021 to September 2022, a cross-sectional survey was conducted with 600 inpatients from four grade A-III hospitals in western China. Data were collected using the Chinese version of the Intensive Care Experience Questionnaire. RESULTS: 585 valid questionnaires were collected, the response rate was 97.5%. ICU patients in western China scored below-the-average for their intensive care experience. Family monthly income, occupation types, medical payment method, type of ICU, ICU admission plan, ICU admission times, mechanical ventilation use, fertility status, analgesia, sedation, and Acute Physiology and Chronic Health Evaluation II scores are important factors influencing ICU patients' intensive care experience. CONCLUSIONS: Medical staff need to pay attention to patient experience, improve the awareness of patient stressors and influencing factors, design nursing programs conducive to patient-positive experience, and promote interventions to further improve the long-term prognosis of patients. The results of this study can also be used as a set of nursing-sensitive indicators for evaluating nursing structure, process, and outcomes.


Asunto(s)
Unidades de Cuidados Intensivos , Calidad de Vida , Humanos , Estudios Transversales , Cuidados Críticos , China
9.
Nat Commun ; 14(1): 7285, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949881

RESUMEN

The construction of polymer-based mimicry on cell surface to manipulate cell behaviors and functions offers promising prospects in the field of biotechnology and cell therapy. However, precise control of polymer grafting sites is essential to successful implementation of biomimicry and functional modulation, which has been overlooked by most current research. Herein, we report a biological site-selected, in situ controlled radical polymerization platform for living cell surface engineering. The method utilizes metabolic labeling techniques to confine the growth sites of polymers and designs a Fenton-RAFT polymerization technique with cytocompatibility. Polymers grown at different sites (glycans, proteins, lipids) have different membrane retention time and exhibit differential effects on the recognition behaviors of cellular glycans. Of particular importance is the achievement of in situ copolymerization of glycomonomers on the outermost natural glycan sites of cell membrane, building a biomimetic glycocalyx with distinct recognition properties.


Asunto(s)
Glicocálix , Polisacáridos , Polimerizacion , Membrana Celular , Polímeros
10.
ACS Appl Mater Interfaces ; 15(47): 54838-54850, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37968844

RESUMEN

Structural engineering is definitely a promising and effective approach to develop excellent microwave absorbing materials with quantities of advantages. Especially, when carbon materials act as the constituents, the fabricated absorbers are available to gain more prominent absorption performance. However, extra high conductivities and the widespread aggregations and stacking of low-dimensional carbon materials always detrimentally affect the impedance matching and weaken the attenuation capacity, inevitably confining their further absorption applications. Herein, by introducing the amorphous chiral carbon nanocoils to overcome the challenges and achieve the strategies of structure optimization and multicomponent recombination, the reduced graphene oxide/carbon nanocoil/carbon nanotube aerogels were successfully synthesized by a successive hydrothermal method and freeze-drying strategy. The as-obtained aerogels possess a porous architecture that contribute to the extraordinary impedance matching and multiple reflections, which integrate the multifarious dielectric loss mechanisms of diverse carbon materials simultaneously. Benefiting from the tricomponent synergistic effect, the ultralight aerogels reach an outstanding microwave absorption property with an extremely low filler content of only 6 wt %. This work provides a helpful approach to design hierarchical absorbers consisted by multidimensional carbon materials for fantastic microwave absorption.

11.
Microbiol Spectr ; : e0131523, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37729536

RESUMEN

Recent deep-ocean exploration has uncovered a variety of cold-water coral (CWC) ecosystems around the world ocean, but it remains unclear how microbiome is associated with these corals at a molecular levels. This study utilized metabarcoding, tissue section observation, and metatranscriptomes to investigate the microbiome (Symbiodiniaceae and bacteria) of CWC species (Narella versluysi, Heterogorgia uatumani, and Muriceides sp.) from depths ranging from 260 m to 370 m. Warm-water coral (WWC) species (Acropora pruinosa, Pocillopora damicornis, and Galaxea fascicularis) were used as control groups. Results revealed that CWC host diverse bacteria and Symbiodiniaceae cells were observed in endoderm of CWC tissues. Several new candidate bacterial phyla were found in both CWC and WWC, including Coralsanbacteria, Coralqiangbacteria, Coralgsqaceae, Coralgongineae, etc. Both the 16S rRNA gene sequencing and metatranscriptomes revealed that Actinobacteria and Proteobacteria were abundant bacterial phyla in CWC. At the gene transcription level, the CWC-associated Symbiodiniaceae community showed a low-level transcription of genes involved in photosynthesis, CO2 fixation, glycolysis, citric acid cycle, while bacteria associated with CWC exhibited a high-level transcription of genes for carbon fixation via the Wood-Lijungdahl pathway, short chain fatty acids production, nitrogen, and sulfur cycles. IMPORTANCE This study shed new light on the functions of both Symbiodiniaceae and bacteria in cold-water coral (CWC). The results demonstrated that Symbiodiniaceae can survive and actively transcribe genes in CWC, suggesting a possible symbiotic or parasitic relationship with the host. This study also revealed complete non-photosynthetic CO2 fixation pathway of bacteria in CWC, as well as their roles in short chain fatty acids production and assimilation of host-derived organic nitrogen and sulfur. These findings highlight the important role of bacteria in the carbon, nitrogen sulfur cycles in CWC, which were possibly crucial for CWC survival in in deep-water environments.

12.
Inorg Chem ; 62(33): 13649-13661, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37599581

RESUMEN

The development of a gas sensor capable of detecting ammonia with high selectivity and rapid response at room temperature has consistently posed a formidable challenge. To address this issue, the present study utilized a one-step solvothermal method to co-assemble α-Fe2O3 and SnO2 by evenly covering SnO2 nanoparticles on the surface of α-Fe2O3. By controlling the morphology and Fe/Sn mole ratio of the composite, the as-prepared sample exhibits high-performance detection of NH3. At room temperature conditions, a gas sensor composed of α-Fe2O3@3%SnO2 demonstrates a rapid response time of 14 s and a notable sensitivity of 83.9% when detecting 100 ppm ammonia. Experiments and density functional theory (DFT) calculations suggest that the adsorption capacity of α-Fe2O3 to ammonia is enhanced by the surface effect provided by SnO2. Meanwhile, the existence of SnO2 tailors the pore structure and effective surface area of α-Fe2O3, creating multiple channels for the diffusion and adsorption of ammonia molecules. Additionally, an N-N heterostructure is formed between α-Fe2O3 and SnO2, which enhances the potential energy barrier and improves the ammonia sensing performance. Demonstration experiments have proved that the sensor shows significant advantages over commercial sensors in the process of ammonia detection in agricultural facilities. This work provides new insights into the perspectives on ammonia detection at room temperature.

13.
Front Plant Sci ; 14: 1176300, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546271

RESUMEN

Introduction: Insect pests from the family Papilionidae (IPPs) are a seasonal threat to citrus orchards, causing damage to young leaves, affecting canopy formation and fruiting. Existing pest detection models used by orchard plant protection equipment lack a balance between inference speed and accuracy. Methods: To address this issue, we propose an adaptive spatial feature fusion and lightweight detection model for IPPs, called ASFL-YOLOX. Our model includes several optimizations, such as the use of the Tanh-Softplus activation function, integration of the efficient channel attention mechanism, adoption of the adaptive spatial feature fusion module, and implementation of the soft Dlou non-maximum suppression algorithm. We also propose a structured pruning curation technique to eliminate unnecessary connections and network parameters. Results: Experimental results demonstrate that ASFL-YOLOX outperforms previous models in terms of inference speed and accuracy. Our model shows an increase in inference speed by 29 FPS compared to YOLOv7-x, a higher mAP of approximately 10% than YOLOv7-tiny, and a faster inference frame rate on embedded platforms compared to SSD300 and Faster R-CNN. We compressed the model parameters of ASFL-YOLOX by 88.97%, reducing the number of floating point operations per second from 141.90G to 30.87G while achieving an mAP higher than 95%. Discussion: Our model can accurately and quickly detect fruit tree pest stress in unstructured orchards and is suitable for transplantation to embedded systems. This can provide technical support for pest identification and localization systems for orchard plant protection equipment.

14.
Environ Res ; 232: 116389, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37302742

RESUMEN

Microplastics (MPs) in farming soils can have a substantial impact on soil ecology and agricultural productivity, as well as affecting human health and the food chain cycle. As a result, it is vital to study MPs detection technologies that are rapid, efficient, and accurate in agriculture soils. This study investigated the classification and detection of MPs using hyperspectral imaging (HSI) technology and a machine learning methodology. To begin, the hyperspectral data was preprocessed using SG convolution smoothing and Z-score normalization. Second, the feature variables were extracted from the preprocessed spectral data using bootstrapping soft shrinkage, model adaptive space shrinkage, principal component analysis, isometric mapping (Isomap), genetic algorithm, successive projections algorithm (SPA), and uninformative variable elimination. Finally, three support vector machine (SVM), back propagation neural network (BPNN), and one-dimensional convolutional neural network (1D-CNN) models were developed to classify and detect three microplastic polymers: polyethylene, polypropylene, and polyvinyl chloride, as well as their combinations. According to the experimental results, the best approaches based on three models were Isomap-SVM, Isomap-BPNN, and SPA-1D-CNN. Among them, the accuracy, precision, recall and F1_score of Isomap-SVM were 0.9385, 0.9433, 0.9385 and 0.9388, respectively. The accuracy, precision, recall and F1_score of Isomap-BPNN were 0.9414, 0.9427, 0.9414 and 0.9414, respectively, while the accuracy, precision, recall and F1_score of SPA-1D-CNN were 0.9500, 0.9515, 0.9500 and 0.9500, respectively. When their classification accuracy was compared, SPA-1D-CNN had the best classification performance, with a classification accuracy of 0.9500. The findings of this study shown that the SPA-1D-CNN based on HSI technology can efficiently and accurately identify MPs in farmland soils, providing theoretical backing as well as technical means for real-time detection of MPs in farmland soils.


Asunto(s)
Microplásticos , Plásticos , Humanos , Imágenes Hiperespectrales , Suelo , Granjas , Tecnología
15.
J Ethnopharmacol ; 317: 116788, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37343650

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Vine tea is a popular folk tea that has been consumed in China for more than 1200 years. It is often used in ethnic medicine by ethnic groups in southwest China with at least 35 aliases in 10 provinces. In coastal areas, vine tea is mostly used to treat heatstroke, aphtha, aphonia, toothache, etc. In contrast, in the southwest inland regions, vine tea is mostly used to clear away heat and toxic materials, antiphlogosis and relieving sore-throat, lowering blood pressure and lipid levels, and alleviating fatigue. Three main species have been used as the source of vine tea, Nekemias grossedentata, Nekemias cantonensis and Nekemias megalophylla. Among them, the leaves of Nekemias grossedentata were considered as new food resource in complicance with regulations, according to the Food Safety Standards published by the Monitoring and Evaluation Department of the National Health and Family Planning Commission in China. AIM OF THE STUDY: At present, the comprehensively summary of Materia Medica on the history and source of vine tea is currently unavailable. The current article summed up the Materia Medica, species origin and pharmacological effects of all 3 major species used in vine tea to fill the knowledge gaps. We also aim to provide a reference for future research on historical textual, resource development and medicinal utilization of vine tea. MATERIALS AND METHODS: Adhering to the literature screening methodology outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), this review encompasses 148 scholarly research papers from three database, paper ancient books, local chronicles and folklore through field investigations. We then comprehensively summarized and discussed research progresses in scientific and application studies of vine tea. RESULTS: The historical records indicated that vine tea could have been used as early as Southern and Northern Dynasties (AC 420-589). Nekemias grossedentata, Nekemias cantonensis and Nekemias megalophylla, were used to considered as vine tea in the ethnic medicine. The main phytochemicals found in three plants are flavonoids, polyphenols and terpenoids, among which dihydromyricetin (DHM) is the most important and most studied active substance. The key words "Ampelopsis grossedentata" (Synonym of Nekemias grossedentata) and "dihydromyricetin/DHM" showed the highest frequency over the last 27 year based on the research trend analysis. And the ethnopharmacology studies drawn the main activities of vine tea are antioxidant, antibacterial, hepatoprotective, neuroprotective and anti-atherosclerosis activities. CONCLUSIONS: This review systematically summarized and discussed vine tea from the following five aspects, history, genetic relationship, phytochemistry, research trend and ethnopharmacology. Vine tea has a long historical usage in Chinese ethnic medicine. Its outstanding therapeutic efficacies have attracted extensive attention in other places in the world at present. Nekemias cantonensis and Nekemias megalophylla are quite similar to Nekemias grossedentata in terms of many aspects. However, the current research has a narrow focus on mainly Nekemias grossedentata and DHM. We propose that future studies could be carried out to determine the synergistic effect of multi-components and multi-targets of vine tea including all 3 species to provide valuable knowledge.


Asunto(s)
Medicamentos Herbarios Chinos , Materia Medica , Vitaceae , Etnofarmacología/métodos , Flavonoides/química , Medicamentos Herbarios Chinos/farmacología , , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química
16.
Vox Sang ; 118(6): 455-462, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37191246

RESUMEN

BACKGROUND AND OBJECTIVES: Adverse donor reaction (ADR) could adversely impact the recruitment and retention of blood donors, but the evidence of effect of sleep quality on ADR is limited and controversial. The goal of this study was to explore the association between the sleep quality and ADR among college students in Wuhan. MATERIALS AND METHODS: The college student blood donors in Wuhan from March to May 2022 were recruited. Self-compiled general information questionnaire and Pittsburgh sleep quality index (PSQI) were investigated by convenience sampling. Univariable and multivariable logistic regression analyses were used to estimate the association. RESULTS: Among 1014 participants included in this study, 63 were in the ADR group and 951 were in the non-ADR group. Compared with the non-ADR group, the PSQI scores of ADR group were higher (3.44 ± 1.81 vs. 2.78 ± 1.82, p < 0.01). The results of multivariable logistic regression analysis showed that after adjusting gender, body mass index, blood donation history and other potential confounding factors, higher PSQI scores were related to the occurrence of ADRs (odds ratio = 1.231, 95% confidence interval 1.075-1.405), that is, the worse the sleep quality, the more likely the ADRs will occur. CONCLUSION: The long-term poor sleep quality of college students is a risk factor for the occurrence of ADRs. It should be identified early before blood donation to reduce the incidence of ADRs and improve the safety and satisfaction of donors.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Calidad del Sueño , Humanos , Estudios Transversales , Estudiantes , China/epidemiología , Donantes de Sangre
17.
Psychopharmacology (Berl) ; 240(7): 1509-1520, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37256377

RESUMEN

BACKGROUND AND PURPOSE: Isookanin, an important antioxidant component in Coreopsis tinctoria Nutt., has shown remarkable hypolipidemic, hypoglycemic, and hypotensive effects. However, the neuroprotective effect of isookanin has not been reported yet. Here, the neuroprotective effects and relevant molecular mechanisms of isookanin are explored for the first time. METHODS: The SH-SY5Y cells were exposed to neurotoxic H2O2, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and Aß25-35, respectively. Cell viability and apoptosis were evaluated by MTT, lactate dehydrogenase (LDH), and TUNEL assays. Intercellular ROS and mitochondrial membrane potential were assessed by DCFH-DA and JC-1 assay. Western blot and qRT-PCR were used to explore the perturbed signaling at the gene and protein levels. Molecular docking analysis and in vitro assay were further applied to confirm potential target. RESULTS: Among the three in vitro models, isookanin showed the best neuroprotection against MPTP-induced damage. Isookanin attenuated the levels of LDH, intracellular ROS, and mitochondrial membrane potential. Isookanin upregulated phosphorylation of AKT and PI3K, and increased BCL2/BAX ratio. Isookanin possessed a powerful affinity toward AKT. Besides, the protective effects of isookanin disappeared when cells were co-treated with an AKT inhibitor (AZD5363). CONCLUSION: Isookanin regulated BCL2/BAX and PI3K/AKT pathways to reduce mitochondrial damage and cellular apoptosis. Isookanin may be a new protector for neurodegenerative diseases.


Asunto(s)
Fármacos Neuroprotectores , Humanos , Apoptosis , Proteína X Asociada a bcl-2/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Peróxido de Hidrógeno/farmacología , Simulación del Acoplamiento Molecular , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Especies Reactivas de Oxígeno
18.
Front Plant Sci ; 14: 1127108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923124

RESUMEN

Rapid nondestructive testing of peanut seed vigor is of great significance in current research. Before seeds are sown, effective screening of high-quality seeds for planting is crucial to improve the quality of crop yield, and seed vitality is one of the important indicators to evaluate seed quality, which can represent the potential ability of seeds to germinate quickly and whole and grow into normal seedlings or plants. Meanwhile, the advantage of nondestructive testing technology is that the seeds themselves will not be damaged. In this study, hyperspectral technology and superoxide dismutase activity were used to detect peanut seed vigor. To investigate peanut seed vigor and predict superoxide dismutase activity, spectral characteristics of peanut seeds in the wavelength range of 400-1000 nm were analyzed. The spectral data are processed by a variety of hot spot algorithms. Spectral data were preprocessed with Savitzky-Golay (SG), multivariate scatter correction (MSC), and median filtering (MF), which can effectively to reduce the effects of baseline drift and tilt. CatBoost and Gradient Boosted Decision Tree were used for feature band extraction, the top five weights of the characteristic bands of peanut seed vigor classification are 425.48nm, 930.8nm, 965.32nm, 984.0nm, and 994.7nm. XGBoost, LightGBM, Support Vector Machine and Random Forest were used for modeling of seed vitality classification. XGBoost and partial least squares regression were used to establish superoxide dismutase activity value regression model. The results indicated that MF-CatBoost-LightGBM was the best model for peanut seed vigor classification, and the accuracy result was 90.83%. MSC-CatBoost-PLSR was the optimal regression model of superoxide dismutase activity value. The results show that the R2 was 0.9787 and the RMSE value was 0.0566. The results suggested that hyperspectral technology could correlate the external manifestation of effective peanut seed vigor.

19.
Artículo en Inglés | MEDLINE | ID: mdl-36768017

RESUMEN

The inflow of foreign direct investment (FDI) has both advanced China's economic development process and influenced the ecological quality of China's regions. Under the deepening of economic globalization and the continuous deterioration in environmental quality, the correlation mechanism between foreign direct investment, environmental regulation, and economic growth is becoming increasingly complex. Therefore, based on the slacks-based measure (SBM) model and the Global Malmquist-Luenberger (GML) index, this study measured the level of green economic growth using data from 30 provinces and cities from 2004-2019 and constructed a panel fixed-effect regression model to study the effect of foreign direct investment on green economic growth in China. The study found that foreign direct investment significantly promoted green economic growth in China, foreign direct investment promoted green economic growth through independent innovation and inhibited green economic growth through imitation innovation, and environmental regulation moderated the impact of foreign direct investment on green economic growth. This paper incorporated foreign direct investment, heterogeneous technological innovation, green economic growth, and environmental regulation into the research framework, and thereby further enriched and improved the research on the theoretical mechanism of green economic growth. The research conclusion clarified the influence mechanism of foreign capital on the quality of China's economic development, which was conducive to the formulation of more reasonable policies for attracting investments and to the promotion of the formation of a positive interaction mechanism between environmental regulation and foreign direct investment, which is of great practical significance for China's economy to achieve sustainable development.


Asunto(s)
Invenciones , Desarrollo Sostenible , Inversiones en Salud , Desarrollo Económico , China , Internacionalidad
20.
J Ethnopharmacol ; 307: 116214, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36736673

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Coreopsis tinctoria Nutt., a popular tea drink used in the Xinjiang region of China, has been traditionally used to treat diabetes and chronic metabolic diseases in China, Portugal, and North America. The bioactive extraction and potential mechanism have not been fully elucidated until now. AIM OF THE STUDY: Traditional herbal medicines usually share network targets due to multicomponent therapeutics. Therefore, we tried to explore the protective effects of C. tinctoria on diabetes and the related molecular mechanism. MATERIALS AND METHODS: A flavonoid-rich fraction of C. tinctoria (CTF) was prepared. After 15 weeks of continuous treatment with CTF, the blood glucose and blood lipid levels of experimental mice were evaluated. Tissue was collected for differentially expressed genes (DEGs), bioinformatics analysis, RT‒PCR and Western blot for target-related DEGs. RESULTS: After 15 weeks of continuous treatment with CTF, db/db mice showed reversed levels of glucose, insulin, glucagon and glycated hemoglobin A1c. CTF treatment also regulated total cholesterol, triglycerides, low density lipoprotein, nonesterified fatty acid, alanine transaminase, and aspartate transaminase. Major metabolic pathways were found to be dysregulated in the liver using a combined analysis of transcriptomics and network pharmacology. CTF treatment regulated 48.2% of 6357 dysregulated genes in db/db mice. The mitochondrial electron transport chain and tricarboxylic acid cycle were mainly affected. The sequencing data showed that fifty-nine predicted target genes for CTF were reverse regulated. Together with 1528 coexpressed genes, these genes reflected the main characteristics of the whole perturbed transcriptomic profile, i.e., dysregulated mitochondrial metabolism. The important genes of the target and coexpressed genes were further verified at the gene and protein levels. CONCLUSIONS: The results confirm that the metabolic changes induced by hyperglycemia are closely related to mitochondrial metabolism in the liver. CTF alters a core gene set that exerts regulatory effects at the biological pathway level in db/db mice. In conclusion, our data reveal that an important molecular event for CTF treatment is the regulation of mitochondrial metabolism and support the idea that herbs or natural compounds are potential therapeutic substances for mitochondrial dysfunction-related diabetes.


Asunto(s)
Coreopsis , Diabetes Mellitus Tipo 2 , Plantas Medicinales , Ratones , Animales , Flavonoides/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Extractos Vegetales/farmacología , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...